By Avivah Litan, VP Analyst at Gartner
As generative AI innovation continues at a breakneck pace, concerns around security and risk have become increasingly prominent. Some lawmakers have requested new rules and regulations for AI tools, while some technology and business leaders have suggested a pause on training of AI systems to assess their safety.
Generative AI isn’t going away
The reality is that generative AI development is not stopping. Organizations need to act now to formulate an enterprise-wide strategy for AI trust, risk and security management (AI TRiSM). There is a pressing need for a new class of AI TRiSM tools to manage data and process flows between users and companies who host generative AI foundation models.
There are currently no off-the-shelf tools in the market that give users systematic privacy assurances or effective content filtering of their engagements with these models, for filtering out things like factual errors, hallucinations, copyrighted materials or confidential information.
AI developers must urgently work with policymakers, including new regulatory authorities that may emerge, to establish policies and practices for generative AI oversight and risk management.
Significant risks for enterprises
Generative AI raises a number of new risks. “Hallucinations” and fabrications, including factual errors, are some of the most pervasive problems already emerging with generative AI chatbot solutions. Training data can lead to biased, off-base or wrong responses, but these can be difficult to spot, particularly as solutions are increasingly believable and relied upon.
Deepfakes are another rapidly growing problem, when generative AI is used for content creation with malicious intent. These fake images, videos and voice recordings have been used to attack celebrities and politicians, to create and spread misleading information, and even to create fake accounts or take over and break into existing legitimate accounts.
In a recent example, an AI-generated image of Pope Francis wearing a fashionable white puffer jacket went viral on social media. While this example was seemingly innocuous, it provided a glimpse into a future where deepfakes create significant reputational, counterfeit, fraud and political risks for individuals, organizations and governments.
Data privacy is also of concern, especially given employees can easily expose sensitive and proprietary enterprise data when interacting with generative AI chatbot solutions. These applications may indefinitely store information captured through user inputs, and even use information to train other models — further compromising confidentiality. Such information could also fall into the wrong hands in the event of a security breach.
Then there’s copyright issues. Generative AI chatbots are trained on a large amount of internet data that may include copyrighted material. As a result, some outputs may violate copyright or intellectual property (IP) protections. Without source references or transparency into how outputs are generated, the only way to mitigate this risk is for users to scrutinize outputs to ensure they don’t infringe on copyright or IP rights.
Finally, cybersecurity concerns pose significant risk. In addition to more advanced social engineering and phishing threats, attackers could use these tools for easier malicious code generation.
Vendors who offer generative AI foundation models assure customers they train their models to reject malicious cybersecurity requests; however, they don’t provide users with the tools to effectively audit all the security controls in place. They also put a lot of emphasis on “red teaming” approaches, which require users put their full trust in the vendors’ abilities to execute on security objectives.
Actions to manage generative AI
It’s important to note that there are two general approaches to leveraging ChatGPT and similar applications. Out-of-the-box model usage leverages these services as-is, with no direct customization. A prompt engineering approach uses tools to create, tune and evaluate prompt inputs and outputs.
For out-of-the-box usage, organizations must implement manual reviews of all model output to detect incorrect, misinformed or biased results. Establish a governance and compliance framework for enterprise use of these solutions, including clear policies that prohibit employees from asking questions that expose sensitive organizational or personal data.
Monitor unsanctioned uses of ChatGPT and similar solutions with existing security controls and dashboards to catch policy violations. For example, firewalls can block enterprise user access, security information and event management systems can monitor event logs for violations, and secure web gateways can monitor disallowed API calls.
For prompt engineering usage, all of these risk mitigation measures apply. Additionally, steps should be taken to protect internal and other sensitive data used to engineer prompts on third-party infrastructure. Create and store engineered prompts as immutable assets.
These assets can represent vetted engineered prompts that can be safely used. They can also represent a corpus of fine-tuned and highly developed prompts that can be more easily reused, shared or sold.
บทความโดย เอวิวา ลิทาน รองประธานฝ่ายวิจัย การ์ทเนอร์
ความก้าวหน้าอย่างรวดเร็วแบบหายใจรดต้นคอของนวัตกรรมปัญญาประดิษฐ์เอไอแบบรู้สร้าง หรือ Generative AI ทำให้เกิดความวิตกด้านความปลอดภัยและความเสี่ยงเพิ่มมากขึ้นตามมา มีนักกฎหมายบางรายเสนอกฎระเบียบและข้อบังคับใหม่เพื่อกำกับดูแลเครื่องมือปัญญาประดิษฐ์ต่าง ๆ และยังมีผู้นำธุรกิจและเทคโนโลยีบางคนออกมาแนะนำให้ระงับการฝึกระบบเอไอเป็นการชั่วคราวเพื่อเป็นการประเมินด้านความปลอดภัยของตน
Generative AI อยู่รอบตัวเรา
ความเป็นจริงที่ว่าการพัฒนา Generative AI ไม่หยุดอยู่เท่านี้ องค์กรจำเป็นต้องดำเนินการตั้งแต่ตอนนี้เพื่อกำหนดกลยุทธ์ภาพรวมสำหรับจัดการด้านความน่าเชื่อถือ ความเสี่ยง และการรักษาความปลอดภัยของเทคโนโลยีปัญญาประดิษฐ์ (หรือ AI TRiSM) ซึ่งมีความจำเป็นเร่งด่วนเพื่อเรียนรู้และเข้าใจเครื่องมือ AI TRiSM สำหรับใช้จัดการข้อมูลและกระบวนการระหว่างผู้ใช้และบริษัทที่เป็นเจ้าของโมเดลพื้นฐานของ Generative AI
เวลานี้ยังไม่มีเครื่องมือสำเร็จรูปใดในตลาดที่รับรองความเป็นส่วนตัวแก่ผู้ใช้อย่างเป็นระบบหรือสามารถกรองเนื้อหาได้อย่างมีประสิทธิภาพเมื่อนำโมเดลเหล่านี้มาใช้งาน ตัวอย่างเช่น การกรองข้อมูลที่ไม่ถูกต้องออกจากข้อเท็จจริง รูปภาพที่ไม่มีอยู่จริง เนื้อหาที่มีลิขสิทธิ์หรือข้อมูลที่เป็นความลับ
นักพัฒนา AI ต้องทำงานร่วมกับผู้กำหนดนโยบายเป็นกรณีเร่งด่วน รวมถึงหน่วยงานกำกับดูแลที่เกิดขึ้นมาใหม่ เพื่อกำหนดนโยบายและวางแนวทางปฏิบัติสำหรับการกำกับดูแลและการจัดการความเสี่ยงของเอไอ
ความเสี่ยงสำคัญที่กระทบองค์กร
Generative AI ก่อให้เกิดความเสี่ยงใหม่ ๆ หลายประการ ประการแรกคือ “ล่อลวงด้วยภาพลวงตา (Hallucinations)” และการปลอมแปลง อาทิ ข้อมูลที่ผิดแปลกไปจากข้อเท็จจริง ซึ่งเป็นปัญหายอดนิยมที่สุดซึ่งเกิดขึ้นแล้วกับโซลูชัน Chatbot ของ Generative AI กรณีข้อมูลการฝึกอบรม กรณีการตอบสนองที่มีอคติ ไม่อยู่ในหลักสมมุติฐานหรือมีความไม่ถูกต้อง กรณีเหล่านี้ตรวจจับได้ยากโดยเฉพาะอย่างยิ่งเมื่อโซลูชันนั้นมีความน่าเชื่อถือและมีผู้ใช้จำนวนมากขึ้นเรื่อย ๆ
ความเสี่ยงต่อมา คือ Deepfakes เมื่อ Generative AI ถูกนำไปใช้สร้างเนื้อหาที่มีเจตนามุ่งร้าย ซึ่งล้วนเป็นความเสี่ยงสำคัญ เช่น รูปภาพปลอม วิดีโอปลอม รวมถึงการบันทึกเสียงปลอม ที่มักถูกใช้เพื่อโจมตีเหล่าคนดังและนักการเมือง เพื่อนำไปสร้างและเผยแพร่ข้อมูลที่ก่อให้เกิดความเข้าใจผิด หรือแม้กระทั่งใช้สร้างบัญชีปลอมหรือเข้าไปยึดและเจาะบัญชีที่ถูกต้องตามกฎหมายที่มีอยู่เดิม
ตัวอย่างเมื่อเร็ว ๆ นี้ คือ กรณีภาพพระสันตปาปาฟรานซิสที่สวมแจ็กเก็ตแฟชั่นสีขาวที่สร้างขึ้นโดย AI และกลายเป็นไวรัลบนโซเชียลมีเดีย แม้จะดูเหมือนไม่มีพิษภัย แต่ก็ทำให้เรามองเห็นอนาคตของ Deepfakes ในการปลอมแปลงคนมีชื่อเสียง ลอกเลียนแบบ ล่อลวง และความเสี่ยงทางการเมืองต่อทั้งตัวบุคคล องค์กร และภาครัฐบาล
ความเป็นส่วนตัวของข้อมูล (Data privacy) ก็น่ากังวลใจไม่ใช่น้อย โดยเฉพาะเมื่อองค์กรให้สิทธิ์พนักงานสามารถเปิดเผยข้อมูลที่ละเอียดอ่อนและเป็นกรรมสิทธิ์ขององค์กรได้อย่างง่ายดายเมื่อใช้โซลูชัน Generative AI Chatbot โดยแอปพลิเคชันเหล่านี้อาจจัดเก็บข้อมูลที่ผู้ใช้ป้อนเข้ามา หรือแม้แต่ข้อมูลที่ใช้ป้อนเพื่อฝึกอบรมโมเดลเอไออื่น ๆ โดยข้อมูลดังกล่าวอาจตกไปอยู่ในมือของผู้ไม่หวังดีกรณีที่เกิดการละเมิดความปลอดภัย
ต่อมาคือ ปัญหาด้านลิขสิทธิ์ (Copyright Issues) แชทบอท Generative AI ได้รับการฝึกอบรมด้านข้อมูลอินเทอร์เน็ตจำนวนมาก ซึ่งอาจรวมถึงเนื้อหาที่มีลิขสิทธิ์ โดยอาจมีผลลัพธ์บางอย่างละเมิดการคุ้มครองลิขสิทธิ์หรือทรัพย์สินทางปัญญา (IP) หากไม่มีการอ้างอิงแหล่งที่มาหรือมีความโปร่งใสเกี่ยวกับวิธีสร้างผลลัพธ์ ดังนั้นวิธีเดียวที่จะลดความเสี่ยงนี้คือให้ผู้ใช้ตรวจสอบข้อเท็จจริงเพื่อให้แน่ใจว่าไม่ได้ละเมิดลิขสิทธิ์หรือสิทธิ์ในทรัพย์สินทางปัญญา
สุดท้าย คือ ข้อกังวลด้านความปลอดภัยทางไซเบอร์ (Cybersecurity Concerns) นอกเหนือจากการล่อลวงทางวิศวกรรมทางสังคมขั้นสูงและภัยคุกคามแบบฟิชชิงแล้ว ผู้โจมตีสามารถใช้เครื่องมือเหล่านี้สร้างโค้ดอันตราย (Malicious Code) ได้ง่ายขึ้น
ผู้ขายที่นำเสนอโมเดลพื้นฐาน Generative AI ต้องให้ความมั่นใจกับลูกค้าว่าได้มีการฝึกฝนและทดสอบโมเดลดังกล่าวนี้เพื่อปฏิเสธคำขอด้านความปลอดภัยทางไซเบอร์ที่เป็นอันตราย อย่างไรก็ตามผู้ขายจะไม่ได้ให้เครื่องมือตรวจสอบการควบคุมความปลอดภัยที่มีประสิทธิภาพทั้งหมดแก่องค์กร โดยพวกเขายังให้ความสำคัญกับแนวทางป้องกันแบบ “ทีมผู้บุกรุกสีแดง หรือ Red Teaming ที่เป็นแนวทางการทดสอบระบบโดยแสร้งเป็นผู้บุกรุกทางดิจิทัลหรือทางกายภาพ“ เป็นอย่างมาก ซึ่งการใช้แนวทางนี้คือต้องการให้องค์กรมั่นใจเต็มที่กับความสามารถต่าง ๆ ที่ผู้ขายนำเสนอสำหรับจัดการตามเป้าหมายด้านความปลอดภัย
รับมือและจัดการความเสี่ยงจาก AI
มีแนวทางทั่วไปที่เราสามารถดึงศักยภาพของ ChatGPT และแอปพลิเคชันที่คล้ายกันมาใช้อยู่สองแบบ ได้แก่ Out-Of-The-Box Model ที่ใช้ประโยชน์จากบริการที่มีอยู่เดิม โดยไม่ปรับแต่งค่าใด ๆ เพิ่มเติม และแนวทางที่สองคือ Prompt Engineering ที่ใช้เครื่องมือสร้าง ปรับแต่ง และประเมินข้อมูลอินพุตและเอาต์พุต
สำหรับการใช้ Out-Of-The-Box Model องค์กรต้องตรวจสอบข้อมูลเอาต์พุตของโมเดลทั้งหมดด้วยตนเอง เพื่อตรวจหาผลลัพธ์ที่ไม่ถูกต้อง ข้อมูลที่ผิดหรือคลาดเคลื่อนไม่เป็นกลาง โดยกำหนดกรอบการกำกับดูแลและการปฏิบัติตามหลักธรรมาภิบาลเพื่อเปิดใช้โซลูชันจำพวกนี้ในองค์กร พร้อมวางนโยบายที่ชัดเจน ห้ามพนักงานถามคำถามที่เปิดเผยข้อมูลองค์กรหรือข้อมูลส่วนบุคคลที่ละเอียดอ่อน
องค์กรควรตรวจสอบการใช้งาน ChatGPT และโซลูชันที่คล้ายคลึงกันที่ไม่ได้รับอนุญาตด้วยการควบคุมความปลอดภัยและแดชบอร์ดที่มีอยู่สำหรับตรวจจับการละเมิดนโยบายการใช้งาน เช่น ไฟร์วอลล์ที่สามารถบล็อกการเข้าถึงของผู้ใช้ในองค์กร ข้อมูลความปลอดภัยและระบบการจัดการเหตุการณ์ที่สามารถตรวจสอบบันทึกการละเมิด และเว็บเกตเวย์ที่มีความปลอดภัยที่สามารถปิดกั้นการเรียกใช้ API ที่ไม่ได้รับอนุญาตได้
สำหรับการใช้ Prompt Engineering มีมาตรการลดความเสี่ยงทั้งหมดพร้อมใช้อยู่แล้ว ซึ่งองค์กรควรดำเนินการตามขั้นตอนเพื่อปกป้องข้อมูลภายในและข้อมูลสำคัญอื่น ๆ ที่ใช้สื่อสารกับเอไอในโครงสร้างพื้นฐานของบุคคลที่สาม โดยการสร้างและจัดเก็บข้อความการสื่อสารทางวิศวกรรมกับเอไอให้เป็นสินทรัพย์ถาวร
และสินทรัพย์เหล่านี้ยังสามารถแสดงการสื่อสารกับเอไออย่างมีนัยสำคัญและผ่านการตรวจสอบแล้วว่าสามารถนำมาใช้ได้อย่างปลอดภัย นอกจากนี้ยังใช้เป็นคลังข้อมูลการสื่อสารกับเอไอที่ได้รับการปรับแต่งและพัฒนาขั้นสูงที่สามารถนำมาใช้ซ้ำ แชร์ หรือจำหน่ายต่อได้