Gartner

Gartner Predicts 40% of Generative AI Solutions Will Be Multimodal By 2027

การ์ทเนอร์วิเคราะห์ 40% ของโซลูชัน Generative AI จะทำงานแบบมัลติโหมดภายในสามปี

Forty percent of generative AI (GenAI) solutions will be multimodal (text, image, audio and video) by 2027, up from 1% in 2023, according to Gartner, Inc. This shift from individual to multimodal models provides an enhanced human-AI interaction and an opportunity for GenAI-enabled offerings to be differentiated.

Erick Brethenoux, Distinguished VP Analyst at Gartner, said, “As the GenAI market evolves towards models natively trained on more than one modality, this helps capture relationships between different data streams and has the potential to scale the benefits of GenAI across all data types and applications. It also allows AI to support humans in performing more tasks, regardless of the environment.”

Multimodal GenAI is one of two technologies identified in the 2024 Gartner Hype Cycle for Generative AI, where early adoption has potential to lead to notable competitive advantage and time-to-market benefits. Along with open-source large language models (LLMs), both technologies have high impact potential on organizations within the next five years.

Among the GenAI innovations Gartner expects will reach mainstream adoption within 10 years, two technologies have been identified as offering the highest potential – domain-specific GenAI models and autonomous agents (see Figure 1).

Figure 1: Hype Cycle for Generative AI, 2024

 

 

Source: Gartner (September 2024)
Source: Gartner (September 2024)

“Navigating the GenAI ecosystem will continue to be overwhelming for enterprises due to a chaotic and fast-moving ecosystem of technologies and vendors,” said Arun Chandrasekaran, Distinguished VP Analyst at Gartner. “GenAI is in the Trough of Disillusionment with the beginning of industry consolidation. Real benefits will emerge once the hype subsides, with advances in capabilities likely to come at a rapid pace over the next few years.”

Multimodal GenAI
Multimodal GenAI will have a transformational impact on enterprise applications by enabling the addition of new features and functionality otherwise unachievable. The impact is not limited to specific industries or use cases, and can be applied at any touchpoint between AI and humans. Today, many multimodal models are limited to two or three modalities, though this will increase over the next few years to include more.

“In the real world, people encounter and comprehend information through a combination of different modalities such as audio, visual and sensing,” said Brethenoux. “Multimodal GenAI is important because data is typically multimodal. When single modality models are combined or assembled to support multimodal GenAI applications, it often leads to latency and less accurate results, resulting in a lower quality experience.”

Open-Source LLMs
Open-source LLMs are deep-learning foundation models that accelerate enterprise value from the implementation of GenAI, by democratizing commercial access and allowing developers to optimize models for specific tasks and use cases. Additionally, they provide access to developer communities in enterprises, academia and other research roles that are working toward common goals to improve and make the models more valuable.

“Open-source LLMs increase innovation potential through customization, better control over privacy and security, model transparency, ability to leverage collaborative development, and potential to reduce vendor lock-in,” said Chandrasekaran. “Ultimately, they offer enterprises smaller models that are easier and less costly to train, and enable business applications and core business processes.”

Domain-Specific GenAI Models
Domain-specific GenAI models are optimized for the needs of specific industries, business functions or tasks. They can improve use-case alignment within the enterprise, while delivering improved accuracy, security and privacy, as well as better contextualized answers. This reduces the need for advanced prompt engineering compared with general-purpose models and can lower hallucination risks through targeted training.

Domain-specific models can achieve faster time to value, improved performance and enhanced security for AI projects by providing a more advanced starting point for industry-specific tasks,” said Chandrasekaran. “This will encourage broader adoption of GenAI because organizations will be able to apply them to use cases where general-purpose models are not performant enough.”

Autonomous Agents

Autonomous agents are combined systems that achieve defined goals without human intervention. They use a variety of AI techniques to identify patterns in their environment, make decisions, invoke a sequence of actions and generate outputs. These agents have the potential to learn from their environment and improve over time, enabling them to handle complex tasks.

“Autonomous agents represent a significant shift in AI capabilities,” said Brethenoux. “Their independent operation and decision capabilities enable them to improve business operations, enhance customer experiences and enable new products and services. This will likely deliver cost savings, granting a competitive edge. It also poses an organizational workforce shift from delivery to supervision.”

เอริค เบรทเดอนิวซ์ รองประธานฝ่ายวิจัยการ์ทเนอร์ กล่าวว่า “เนื่องจากตลาด GenAI วิวัฒน์ไปสู่โมเดลที่เกิดและพัฒนาด้วยโหมดต่าง ๆ มากกว่าหนึ่งโหมด สิ่งนี้ช่วยสะท้อนภาพความสัมพันธ์ระหว่างข้อมูลที่ส่งออกมาในปริมาณมากและเพิ่มขึ้นต่อเนื่องที่แตกต่างกัน และมีศักยภาพในการปรับขนาดการใช้และเพิ่มประโยชน์ของ GenAI ให้ครอบคลุมประเภทข้อมูลและแอปพลิเคชันทั้งหมด นอกจากนี้ยังช่วยให้ AI สนับสนุนการทำงานของมนุษย์ได้มากขึ้นโดยไม่คำนึงถึงสภาพแวดล้อม

Multimodal GenAI เป็นหนึ่งในสองเทคโนโลยีที่ได้รับการระบุไว้ในรายงาน Gartner Hype Cycle for Generative AI ปีนี้ โดยการนำมาใช้ช่วงแรกอาจสร้างความได้เปรียบในการแข่งขันที่สำคัญและเพิ่มประสิทธิภาพในด้านระยะเวลาในการนำออกสู่ตลาด ควบคู่ไปกับโมเดลภาษาโอเพนซอร์สขนาดใหญ่ (LLM) ทำให้เทคโนโลยีทั้งสองมีศักยภาพที่จะสร้างผลกระทบสูงต่อองค์กรอย่างสูงภายในห้าปีข้างหน้านี้ 

บรรดานวัตกรรม GenAI ที่การ์ทเนอร์คาดว่าจะได้รับการยอมรับแพร่หลายภายใน 10 ปีนั้น มีเทคโนโลยี ประเภทที่ได้รับการระบุว่ามีศักยภาพสูงสุด ได้แก่ Domain-Specific GenAI Models และ Autonomous Agents (ดูรูปที่ 1)

รูปที่ 1: วงจรเทคโนโลยีสำหรับ Generative AI ปี 2567 

ที่มา:การ์ทเนอร์ (กันยายน 2567) 
ที่มา:การ์ทเนอร์ (กันยายน 2567)

อรุณ จันทรเศกการัน รองประธานฝ่ายวิจัยของการ์ทเนอร์ กล่าวว่า “การวิเคราะห์แนวโน้มระบบนิเวศของ GenAI ยังคงเป็นเรื่องยากสำหรับองค์กร เนื่องจากระบบนิเวศของเทคโนโลยีนี้และผู้ผลิตหรือผู้ให้บริการเทคโนโลยีนั้นมีการเปลี่ยนแปลงอย่างรวดเร็ว โดย GenAI กำลังอยู่ในช่วงขาลงเมื่ออุตสาหกรรมเริ่มรวมตัวเข้าด้วยกัน ทว่าประโยชน์ที่แท้จริงจะเกิดขึ้นเมื่อกระแสนี้ลดลง และตามมาด้วยขีดความสามารถที่ก้าวหน้าขึ้นจะเกิดขึ้นรวดเร็วไปอีกมากในอีกไม่กี่ปีข้างหน้านี้

Multimodal GenAI

Multimodal GenAI จะมีผลกระทบต่อแอปพลิเคชันองค์กรอย่างมาก จากการเพิ่มคุณสมบัติและฟังก์ชันใหม่ ๆ ที่วิธีอื่น ๆ ทำไม่ได้ และผลกระทบนั้นไม่ได้จำกัดอยู่แค่เฉพาะอุตสาหกรรมหรือยูสเคสการใช้งานเฉพาะเท่านั้น แต่ยังสามารถนำไปประยุกต์ใช้ในทุก Touchpoint ระหว่าง AI กับมนุษย์ ปัจจุบัน Multimodal Model หลาย ๆ ตัวยังมีข้อจำกัดอยู่เพียงสองหรือสามโหมดเท่านั้น แต่อีกไม่กี่ปีข้างหน้าจะเพิ่มขึ้นเพื่อให้ครอบคลุมมากขึ้น

ในโลกความเป็นจริง ผู้คนจะพบเจอและเข้าใจข้อมูลผ่านการประมวลผลที่เป็นการผสมผสานของข้อมูลหลากหลายประเภท อาทิ เสียง ภาพและการสัมผัส โดย Multimodal GenAI นั้นมีความสำคัญอย่างยิ่ง เนื่องจากข้อมูลโดยทั่วไปนั้นจะประกอบด้วยประเภทต่าง ๆ อยู่แล้ว เมื่อนำ Single Modality Models มาประกอบเข้าด้วยกันเพื่อรองรับแอปพลิเคชัน Multimodal GenAI มักส่งผลให้เกิดความล่าช้าและลดความแม่นยำของผลลัพธ์ ส่งผลให้ได้รับประสบการณ์ที่มีคุณภาพต่ำ” เบรทเดอนิวซ์ กล่าวเพิ่ม

Open-Source LLMs

LLM แบบโอเพ่นซอร์สเป็นโมเดลพื้นฐานการเรียนรู้เชิงลึกที่เร่งมูลค่าองค์กรจากการนำ GenAI ไปปรับใช้งาน โดยทำให้การเข้าถึงเชิงพาณิชย์ได้อย่างเสรีและอนุญาตให้ผู้พัฒนาปรับแต่งโมเดลให้เหมาะกับงานและยูสเคสการใช้งานเฉพาะ นอกจากนี้ ยังสามารถเข้าถึงชุมชนนักพัฒนาในองค์กร สถาบันการศึกษา และบทบาทการวิจัยอื่น ๆ ที่กำลังทำงานเพื่อเป้าหมายร่วมกันปรับปรุงและทำให้โมเดลนี้มีคุณค่ามากขึ้น

“LLM แบบโอเพ่นซอร์สเพิ่มศักยภาพด้านนวัตกรรมผ่านการปรับแต่งอย่างเหมาะสม ทำให้การควบคุมความเป็นส่วนตัวและความปลอดภัยดีขึ้น โมเดลมีความโปร่งใส มีความสามารถเพิ่มจากการพัฒนาร่วมกัน และมีศักยภาพในการลดการผูกขาดของผู้ขาย ท้ายที่สุดแล้ว LLM นำเสนอโมเดลขนาดเล็กกว่าให้กับองค์กร ซึ่งฝึกฝนได้ง่ายและมีค่าใช้จ่ายน้อยกว่า และเปิดใช้งานแอปพลิเคชันทางธุรกิจและกระบวนการทางธุรกิจหลัก” จันทราเสการัน กล่าวเพิ่ม

Domain-Specific GenAI Models

Domain-Specific GenAI Models ได้รับการพัฒนาเพื่อตอบสนองต่อความต้องการของอุตสาหกรรม ฟังก์ชันทางธุรกิจ หรือภารกิจที่มีความเฉพาะ โดยโมเดลเหล่านี้สามารถเพิ่มประสิทธิภาพของการจัดวางยูสเคสการใช้งานภายในองค์กรได้ พร้อมมอบความแม่นยำ ความปลอดภัย และความเป็นส่วนตัวที่ดีกว่า รวมถึงคำตอบที่เข้าใจบริบท ซึ่งช่วยลดความจำเป็นในการออกแบบข้อความที่ใช้สื่อสารกับโมเดล AI เทียบกับโมเดล AI ที่พัฒนามาเพื่อวัตถุประสงค์ทั่วไป และยังสามารถลดความเสี่ยงจากกรณีที่ AI อาจสร้างภาพหลอนขึ้นมาเอง (Hallucination Risks) จากการฝึกฝนที่เน้นการกำหนดเป้าหมาย

Domain-specific models สามารถร่นระยะเวลาส่งมอบบริการตามความต้องการ (Time to Value) ประสิทธิภาพเพิ่มขึ้นและมีความปลอดภัยสูงขึ้นสำหรับโครงการ AI ต่าง ๆ โดยการนำเสนอจุด Start ที่ก้าวล้ำกว่าสำหรับงานอุตสาหกรรมเฉพาะ สิ่งนี้จะส่งเสริมการนำ GenAI มาใช้อย่างแพร่หลายมากขึ้น เนื่องจากองค์กรต่าง ๆ จะสามารถนำไปประยุกต์ใช้ในยูสเคสที่ General-Purpose Models ไม่มีประสิทธิภาพเพียงพอ จันทราเสการัน กล่าวเพิ่ม

Autonomous Agents

Autonomous Agents คือ ระบบรวม (Combined Systems) ที่สามารถบรรลุเป้าหมายที่กำหนดไว้ได้โดยปราศจากมนุษย์ โดยใช้เทคนิค AI ที่หลากหลายในการระบุรูปแบบของสภาพแวดล้อม การตัดสินใจ การจัดลำดับการดำเนินการและสร้างผลลัพธ์ โดยตัวแทนเหล่านี้มีศักยภาพเรียนรู้จากสภาพแวดล้อมและปรับปรุงตลอดเวลา ทำให้สามารถจัดการงานที่ซับซ้อนได้

“Autonomous Agents เป็นการเปลี่ยนแปลงครั้งสำคัญของความสามารถ AI โดยความสามารถดำเนินการและตัดสินใจได้อย่างอิสระช่วยปรับปรุงการดำเนินธุรกิจ สร้างประสบการณ์ที่ดีให้กับลูกค้า และใช้ในการเปิดตัวผลิตภัณฑ์และบริการใหม่ ๆ ส่งผลให้ประหยัดต้นทุนและมีความได้เปรียบทางการแข่งขัน นอกจากนี้ยังเปลี่ยนบทบาทของทีมงานในองค์กรจากการส่งมอบ (Delivery) เป็นการควบคุมดูแล (Supervision) แทน