Gartner

Gartner Forecasts Worldwide AI Chips Revenue to Reach $53 Billion in 2023

การ์ทเนอร์คาดการณ์รายได้ชิป AI ทั่วโลก ในปี 2566 จะสูงแตะ 53 พันล้านดอลลาร์สหรัฐฯ

By 2027, AI Chips Revenue Is Forecast to More Than Double

Semiconductors designed to execute artificial intelligence (AI) workloads will represent a $53.4 billion revenue opportunity for the semiconductor industry in 2023, an increase of 20.9% from 2022, according to the latest forecast from Gartner, Inc.

“The developments in generative AI and the increasing use of a wide range AI-based applications in data centers, edge infrastructure and endpoint devices require the deployment of high performance graphics processing units (GPUs) and optimized semiconductor devices. This is driving the production and deployment of AI chips,” said Alan Priestley, VP Analyst at Gartner.

AI semiconductor revenue will continue to experience double-digit growth through the forecast period, increasing 25.6% in 2024 to $67.1 billion (see Table 1). By 2027, AI chips revenue is expected to be more than double the size of the market in 2023, reaching $119.4 billion.

Table 1. AI Semiconductors Revenue Forecast, Worldwide, 2022-2024 (Millions of U.S. Dollars)

2022 2023 2024
Revenue ($M) 44,220 53,445 67,148

Source: Gartner (August 2023)

Many more industries and IT organizations will deploy systems that include AI chips as the use of AI-based workloads in the enterprise matures. In the consumer electronics market, Gartner analysts estimate that by the end of 2023, the value of AI-enabled application processors used in devices will amount to $1.2 billion, up from $558 million in 2022.

The need for efficient and optimized designs to support cost effective execution of AI-based workloads will result in an increase in deployments of custom-designed AI chips. “For many organizations, large scale deployments of custom AI chips will replace the current predominant chip architecture – discrete GPUs – for a wide range of AI-based workloads, especially those based on generative AI techniques,” said Priestley.

Generative AI is also driving demand for high-performance computing systems for development and deployment, with many vendors offering high performance GPU-based systems and networking equipment seeing significant near-term benefits. In the long term, as the hyperscalers look for efficient and cost-effective ways to deploy these applications, Gartner expects an increase in their use of custom-designed AI chips.

รายได้ชิป AI ทั่วโลก ในปี 2566 จะสูงแตะ 53 พันล้านดอลลาร์สหรัฐฯ

การ์ทเนอร์คาดการณ์มูลค่าโอกาสในการสร้างรายได้ของเซมิคอนดักเตอร์ที่ออกแบบมาเพื่อรันเวิร์กโหลดปัญญาประดิษฐ์ (AI) ในอุตสาหกรรมเซมิคอนดักเตอร์ ปี 2566 จะเพิ่มขึ้น 20.9% จากปี 2565 หรือคิดเป็นมูลค่า 53.4 พันล้านดอลลาร์สหรัฐฯ

อลัน พรีสต์ลีย์ รองประธานฝ่ายวิจัยของการ์ทเนอร์ กล่าวว่า “การพัฒนา Generative AI และการใช้งานที่เพิ่มขึ้นของ AI-Based Applications ที่หลากหลายในดาต้าเซ็นเตอร์, โครงสร้างพื้นฐาน Edge และอุปกรณ์ปลายทาง จำเป็นต้องติดตั้งหน่วยประมวลผลกราฟิกประสิทธิภาพสูง (GPU) และอุปกรณ์เซมิคอนดักเตอร์ที่เหมาะสม ซึ่งสิ่งนี้กำลังขับเคลื่อนการผลิตและการใช้งานชิป AI”

การ์ทเนอร์พบว่าตลอดช่วงเวลาของการคาดการณ์ รายได้จากเซมิคอนดักเตอร์ AI จะยังเติบโตเป็นตัวเลขสองหลัก โดยในปี 2567 จะเพิ่มขึ้น 25.6% หรือคิดเป็นมูลค่า 67.1 พันล้านดอลลาร์สหรัฐฯ (ดูตารางที่ 1) และภายในปี 2570 รายได้ชิป AI คาดว่าจะเพิ่มขึ้นกว่าเท่าตัวของตลาดในปี 2566 โดยมีมูลค่าถึง 119.4 พันล้านดอลลาร์สหรัฐฯ

ตารางที่ 1 การคาดการณ์รายได้ของ AI เซมิคอนดักเตอร์ทั่วโลก ระหว่างปี 2565-2567 (หน่วย: ล้านดอลลาร์สหรัฐฯ)

2022 2023 2024
Revenue ($M) 44,220 53,445 67,148

ที่มา: การ์ทเนอร์ (สิงหาคม 2566)

อุตสาหกรรมและองค์กรด้านไอทีจำนวนมากจะปรับใช้ระบบที่มีชิป AI ตามปริมาณเวิร์กโหลดงานที่ใช้ AI ในองค์กรที่เติบโตสูงขึ้น หากพิจารณาตลาดอุปกรณ์อิเล็กทรอนิกส์สำหรับผู้บริโภค นักวิเคราะห์การ์ทเนอร์ประเมินว่า ภายในสิ้นปี 2566 มูลค่าของชิปประมวลผลในแอปพลิเคชันที่ใช้งาน AI (AI-Enabled Application) ในอุปกรณ์ต่าง ๆ จะแตะ 1.2 พันล้านดอลลาร์สหรัฐฯ โดยเพิ่มขึ้นจาก 558 ล้านดอลลาร์สหรัฐฯ ในปี 2565

ความต้องการด้านการออกแบบที่มีประสิทธิภาพและเหมาะสมที่สุดสำหรับรองรับการดำเนินการปริมาณเวิร์กโหลดงานที่ใช้ AI อย่างคุ้มค่าส่งผลให้มีการใช้งานชิป AI ที่ออกแบบเองเพิ่มขึ้น พรีสต์ลีย์ กล่าวเพิ่มเติมว่า “สำหรับองค์กรหลาย ๆ แห่ง การปรับใช้ชิป AI ที่ออกแบบเองสำหรับใช้งานในสเกลใหญ่ ๆ จะเข้ามาแทนที่สถาปัตยกรรมชิปในปัจจุบัน รวมถึง discrete GPUs สำหรับใช้ในปริมาณเวิร์กโหลดงานที่ใช้ AI ที่หลากหลาย โดยเฉพาะอย่างยิ่งการใช้เทคนิค Generative AI”

Generative AI ยังกระตุ้นความต้องการระบบคอมพิวเตอร์ที่มีประสิทธิภาพสูงสำหรับการพัฒนาและการนำไปใช้ โดยมีผู้จำหน่ายหลายรายที่เสนอระบบ GPU ที่มีประสิทธิภาพสูง และอุปกรณ์เครือข่ายซึ่งมองว่าเป็นประโยชน์ระยะสั้น แต่ในระยะยาว การ์ทเนอร์คาดว่าจะมีการใช้ชิป AI ที่ออกแบบเองเพิ่มขึ้น เมื่อผู้ให้บริการคลาวด์ขนาดใหญ่ (หรือ Hyperscaler) มองหาวิธีเพิ่มประสิทธิภาพและความคุ้มค่าในการปรับใช้แอปพลิเคชันเหล่านี้